Rodrigues' Formula: The Chebyshev Polynomials can be expressed by Rodrigues' formula:
where
Generating Function: The generating function of a Chebyshev Polynomial is:
Orthogonality: Chebyshev Polynomials , , form a complete orthogonal set on the interval with respect to the weighting function . It can be shown that:
By using this orthogonality, a piecewise continuous function in can be expressed in terms of Chebyshev Polynomials:
where
This orthogonal series expansion is also known as a FourierChebyshev Series expansion or a Generalized Fourier Series expansion.
Even/Odd Functions: Whether a Chebyshev Polynomial is an even or odd function depends on its degree .
Based on ,
• is an even function, when is even.
• is an odd function, when is odd.
Recurrence Relation: A Chebyshev Polynomial at one point can be expressed by neighboring Chebyshev Polynomials at the same point.
