Design Home Sensors Sensor Home Instruments/Devices Methods/Principles Displacement Stress & Strain Pressure Fluid Flow Pitot Tube Intro Pitot Tube Theory Hot Wire Intro Hot Wire Theory Laser Doppler Intro Doppler Effect Laser Doppler Theory Flowmeter Temperature Resources Bibliography
Power Transmission

Gear drives, bearings, motors, clutches, couplings, machine controls, sensors and components.

Salary Expectation

8 things to know about the interview question "What's your salary expectation"?

Autonomous Vehicle Engineering

The No. 1 media source for those developing the next generation mobility solutions.

Laser Focus World

Semiconductors, medical equipment, lasers, optics and aviation and aerospace.

more free magazines       Introduction Consider a wire that's immersed in a fluid flow. Assume that the wire, heated by an electrical current input, is in thermal equilibrium with its environment. The electrical power input is equal to the power lost to convective heat transfer, where I is the input current, Rw is the resistance of the wire, Tw and Tf are the temperatures of the wire and fluid respectively, Aw is the projected wire surface area, and h is the heat transfer coefficient of the wire. The wire resistance Rw is also a function of temperature according to, where a is the thermal coefficient of resistance and RRef is the resistance at the reference temperature TRef. The heat transfer coefficient h is a function of fluid velocity vf according to King's law, where a, b, and c are coefficients obtained from calibration (c ~ 0.5). Combining the above three equations allows us to eliminate the heat transfer coefficient h, Continuing, we can solve for the fluid velocity, Two types of thermal (hot-wire) anemometers are commonly used: constant-temperature and constant-current. The constant-temperature anemometers are more widely used than constant-current anemometers due to their reduced sensitivity to flow variations. Noting that the wire must be heated up high enough (above the fluid temperature) to be effective, if the flow were to suddenly slow down, the wire might burn out in a constant-current anemometer. Conversely, if the flow were to suddenly speed up, the wire may be cooled completely resulting in a constant-current unit being unable to register quality data.
 Constant-Temperature Hot-Wire Anemometers For a hot-wire anemometer powered by an adjustable current to maintain a constant temperature, Tw and Rw are constants. The fluid velocity is a function of input current and flow temperature, Furthermore, the temperature of the flow Tf can be measured. The fluid velocity is then reduced to a function of input current only.
 Constant-Current Hot-Wire Anemometers For a hot-wire anemometer powered by a constant current I, the velocity of flow is a function of the temperatures of the wire and the fluid, If the flow temperature is measured independently, the fluid velocity can be reduced to a function of wire temperature Tw alone. In turn, the wire temperature is related to the measured wire resistance Rw. Therefore, the fluid velocity can be related to the wire resistance.
Glossary