Selecting the Right 3D Printer

Discover how to choose the right 3D printer for your needs and the key performance attributes to consider.

Metal 3D Printing Design Guide

Direct Metal Laser Sintering (DMLS) 3D printing for parts with reduced cost and little waste.

3D Scanners

A white paper to assist in the evaluation of 3D scanning hardware solutions.

Essentials of Manufacturing

Information, coverage of important developments and expert commentary in manufacturing.

more free publications
Navier-Stokes Equations
The motion of a non-turbulent, Newtonian fluid is governed by the Navier-Stokes equation:
The above equation can also be used to model turbulent flow, where the fluid parameters are interpreted as time-averaged values.

The time-derivative of the fluid velocity in the Navier-Stokes equation is the material derivative, defined as:

The material derivative is distinct from a normal derivative because it includes a convection term, a very important term in fluid mechanics. This unique derivative will be denoted by a "dot" placed above the variable it operates on.
Navier-Stokes Background
On the most basic level, laminar (or time-averaged turbulent) fluid behavior is described by a set of fundamental equations. These equations are:
The Navier-Stokes equation is obtained by combining the fluid kinematics and constitutive relation into the fluid equation of motion, and eliminating the parameters D and T. These terms are defined below:
QuantitySymbolObjectUnits
fluid stressT2nd order tensorN/m2
strain rateD2nd order tensor1/s
unity tensorI2nd order tensor1
Glossary
Selecting the Right 3D Printer

Discover how to choose the right 3D printer for your needs and the key performance attributes to consider.

Metal 3D Printing Design Guide

Direct Metal Laser Sintering (DMLS) 3D printing for parts with reduced cost and little waste.

3D Scanners

A white paper to assist in the evaluation of 3D scanning hardware solutions.

Essentials of Manufacturing

Information, coverage of important developments and expert commentary in manufacturing.