Design-2-Part

How OEM's can make their parts better, faster, and more efficient.

Salary Expectation

8 things to know about the interview question "What's your salary expectation"?

Laser Focus World

Semiconductors, medical equipment, lasers, optics and aviation and aerospace.

Power Transmission

Gear drives, bearings, motors, clutches, couplings, machine controls, sensors and components.

more free magazines
Glossary » Design » Oring » Chemical » Methyl Propyl Salicylate

Common O-Ring materials that are SUITABLE for dynamic and static seal in the environment containing Methyl Propyl Salicylate include

  • Virgin Teflon: Because Teflon is a hard plastic rather than a stretchy elastomer, it is uncommon to see an o-ring that is made entirely of Teflon.

The O-Ring materials below are USUALLY SUITABLE for static seal in the environment containing Methyl Propyl Salicylate.

  • Aflas: Aflas is the tradename for a unique fluoroelastomer based upon an alternating copolymer of tetrafluoroethylene and propylene ("TFE/P").
  • Butyl: Butyl (IIR) is a synthetic rubber, a copolymer of isobutylene and isoprene.
  • Ethylene-Propylene: Ethylene-propylene (EP) is a copolymer of ethylene and propylene.
  • Fluorocarbon: Fluorocarbon elastomer (FKM) material is also known by its tradename VITON or Fluorel.

O-Ring materials that are NOT SUITABLE for using in the environment containing Methyl Propyl Salicylate include

  • Buna-N (Nitrile): Buna-N, also known as Nitrile rubber, is a synthetic rubber copolymer of acrylonitrile (ACN) and butadiene.
  • Hypalon: Hypalon is the traenme of a clasof Chlorosulfonated Polyethylene (CSM).
  • Natural Rubber: Natural rubber is a product coagulated from the latex of the rubber tree, hevea brasiliensis.
  • Neoprene: Neoprene is a homopolymer of chlorobutadiene (CR).
Additional Information

There is not enough data to determine whether the following common O-Ring materials are suitable for using in the environment containing Methyl Propyl Salicylate or not.

  • Chemraz: Chemraz combines the resilience and sealing force of an elastomer with chemical resistance approaching that of PTFE.
  • Epichlorohydrin: Epichlorohydrin (ECO) has properties similar to nitrile rubber but with better heat and oil resistance as well as better low temperature flexibility.
  • Fluorosilicone: Fluorosilicone combines excellent low-temperature performance of silicone with improved chemical resistance.
  • Kalrez: Kalrez is the tradename for a perfluoroelastomeric material.
  • Hydrogenated Nitrile: Hydrogenated Nitrile Butadiene Rubber (HNBR) is also known as Highly Saturated Nitrile (HSN).
  • Polyacrylate: Polyacrylate (ACM) is a class of copolymer of ethyl and acrylates.
  • Polysulfide: Polysulfide was one of the first commercial synthetic elastomers.
  • Cast Polyurethane: Cast Polyurethane exhibits outstanding tensile strength and abrasion resistance in comparison with other elastomers.
  • Millable Polyurethane: Millable Polyurethane rubber is made from both polyester and polyether polyols.
  • Silicone: Silicone is a semi-organic elastomer with outstanding resistance to extremes of temperature.
  • Styrene Butadiene: Styrene-Butadiene rubber (SBR) has properties similar to those of natural rubber.
  • Vamac: Vamac is the tradename of a class of Ethylene Acrylic elastomer (AEM).
Related Pages