Generic (ABS, ...)
Trade Name
Materials Home
General Information
Polymer Home
Material Science
Selection Criteria
Flow Characteristics
Datasheet Primer
Major Categories
Polymer Index
History Timeline
List by Process
3D Scanners

A white paper to assist in the evaluation of 3D scanning hardware solutions.

Negotiate Your Salary

Learn the best principles to negotiate the salary you deserve!

Desktop Engineering

Design, simulation, test, prototyping and high performance computing.

Essentials of Manufacturing

Information, coverage of important developments and expert commentary in manufacturing.

more free magazines
Selection Methodology
The methodology of selection of polymer material is outlined below

  •  Experience What are similar products made of ? When a product is conceived, it is good practice to see what has been done in the past to gain some knowledge of successes and failures. Failure analysis data is often useful in selection of the right polymer. This information can be gathered from other design and manufacturing engineers, mold builders, and the molding plants where such parts are produced. These sources are also good at providing valuable input on raw materials that are fairly new on the market that may lack substantive documentation from the manufacturer.
  •  Criteria The search for materials is based on subjective criteria as outlined above as well as objective criteria for the current design. The objective criteria include:
 º Required criteria such as flammability, chemical resistance, temperature resistance (both high and low), electrical, humidity etc.
 º Regulatory requirements, such as UL, FCC, FDA etc.
 º Cost. Cost is not simply cost per unit weight; rather it is cost per unit volume since it is the volume of the part that stays more or less fixed for a given mold.
 º Environmental compatibility. Includes the ability to recycle the polymer, pollution, and energy demands.
  •  Analysis Stress analysis can be done for features under stress. These include snaps, latches, screw-bosses, load bearing elements etc. Classic hand calculations and finite element analysis (FEA) can be useful, but the design engineer must be aware that plastics have characteristics partly of solids and partly of viscous liquids, so that classical Hookean engineering formulas cannot be used with confidence.
  •  Processing and the Skin-Effect Molding and extrusion of plastics alters their properties so care must be taken to look at similar parts. Processing typically induces high anisotropy and non-homogeneity to a plastic. It is difficult to produce a structurally accurate model of the part since a molded part will be anisotropic and non-homogeneous. Most molded parts have a surface "skin" devoid of filler and often crystalline and therefore highly directional. Fortunately, directionality and non-homogeneity typically impart added strength to a plastic structure. Processing-induced differences are most pronounced in crystalline plastics such as nylon, acetal and polyethylene. The differences are less significant in amorphous materials such as polycarbonate, polystyrene, and ABS.
  •  Prototyping Prototypes parts can be made for those features that are highly stressed or difficult in some other way. These prototype parts can be produced in small prototype molds that just produce say one design of latch and a snap. Thus a hard to design latch can be validated, without building a whole mold. As far as the whole part is concerned, rapid prototyping methods (such as stereo-lithography) can be used to make full sized models or scale models for the purpose of visualization.
  •  Design Validation The ideal way to mock up a part for design verification testing is to mold the part in a "soft" steel mold. This is more expensive than a resin or aluminum mold, but thermal properties most resemble those of a hardened tool steel mold and the part properties will resemble the production part. Paramount to the similarity is the cooling rate of the plastic as it is injected. For non-structural parts, an aluminum or even a resin prototype mold will suffice.
  •  Testing Once some promising polymers are chosen based on the above criteria, they should be tested. The features with the greatest weaknesses should be tested against known criteria/challenges. These could include drop tests for structural challenges, dielectric strength for electrical voltage challenge, latch cycling for fatigue challenge, etc. This will gain valuable time and experience as the mold is being scheduled for fabrication. Any testing prior to mold-build start will be advantageous from both cost and schedule point of view.